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“Artificial noses” are vapor detection systems that mimic key
principles of vertebrate olfaction. Unlike the selectivity characteristic
of most biological interactions, such as enzyme/substrate binding,
vertebrate olfaction relies on cross-reactive receptors that respond
to many odors, generating unique response patterns.1 By creating
a “fingerprint” for each odor, humans can discriminate thousands
of compounds, even though they only have 500-1000 odorant
receptor genes.2 Artificial nose systems utilize cross-reactive sensing
elements, akin to the primary odorant receptors, that generate
response patterns when exposed to odorants. Responses are
identified by pattern recognition algorithms, analogous to cortical
processing that enables odorant recognition.3 While the cross-
reactivity and pattern recognition aspects of vertebrate olfaction
have been exploited in artificial nose systems,4 olfactory flow
dynamics have been largely overlooked. Several papers reported
the use of catalytic surfaces in a flow chamber to induce changes
in the concentration profile of analytes presented to a series of
identical sensors. The sensors detected local changes in the
concentration profile, and the differences were used to enhance
analyte discrimination;5 however, the flow environment itself was
not responsible for the enhancement. Here we show that improved
discrimination is obtained when identical sensors are exposed to
the complex flow environment in a model nasal cavity, demonstrat-
ing a novel method to enhance the discriminatory ability of vapor
sensors.

In vertebrates, the nasal cavity plays an important role in odor
discrimination by influencing the distribution of odorant molecules
to olfactory receptors through several mechanisms.6 First, the lining
of the nasal cavity acts in a manner similar to that of a gas
chromatography column, separating molecules on the basis of their
partition coefficients into the mucosal layer along the length of the
cavity.7 The nasal cavity’s second major influence is on the flow
dynamics. The interiors of vertebrate nasal cavities are typically
convoluted, creating distinct flow paths and generating eddies and
currents that result in uneven distribution of odorants to the receptors
in the anterior and posterior regions of the cavity, physically
patterning odors.8,9 There are also pockets of receptors that are not
in the main airflow, where diffusion is the only mechanism for
exposure. In these regions, analyte molecules are detected exclu-
sively on the basis of their diffusion rates.9 All of these mechanisms
may play a role in odor perception and discrimination in vertebrate
olfaction, and these mechanisms could be a rich area to exploit in
developing sensor diversity.

In this paper, we use a nasal cavity model to investigate how
the complex flow dynamics through a cavity can affect odor
discrimination with an optical vapor sensor. A sensor in this study
is defined as an individual single-core fiber with its distal tip coated
with an adhesive to affix thousands of vapor-sensitive fluorescent
microspheres.10 The microspheres are impregnated with Nile Red,
a solvatochromic, fluorescent indicator that responds to polarity
changes by shifting its emission maximum. Sensors incorporating

this indicator are termed “cross-reactive”, because the dye responds
to any analyte that affects its environmental polarity.11 The temporal
fluorescence response of each sensor is recorded with a CCD
camera before, during, and after an analyte pulse is delivered to
the sensors. We hypothesized that by distributingidentical fiber
optic sensors in a complex flow environment, the sensors would
experience different exposure conditions, and therefore would
respond differently to the same analyte. To test this hypothesis,
we fabricated a complex cavity by translating a computed tomog-
raphy (CT) scan of a canine nasal cavity (Figure 1a) into a 2×
scale plastic model (Figure 1b,c). The nasal model, while not as
intricate as an actual nasal cavity due to fabrication restrictions,
has many passageways, creating a complex flow environment.
Identical sensors were fabricated and then placed into different
positions within the nasal cavity model. Vapor was pulsed through
the nasal cavity by a vacuum/sparge system. The flow rate during
the pulse was approximately 1000 mL/min, which corresponds
approximately to that of a dog, taking into account the 2× scale of
the model.

One sensor was placed in the nostril of the nose model (position
1 in Figure 1c), and the rest were distributed through the cavity.
The flow environment effect on sensor responses was determined
by comparing the discriminatory ability of the sensor in position 1
relative to the discriminatory ability of the array of five sensors
distributed in the nasal cavity. Because all five sensors were
identical, the only difference in the discriminatory ability of the
one sensor versus five should be due to additional information

Figure 1. (a) CT scan slice showing the interior structure of a canine nasal
cavity. (b) Back view of the nasal cavity model with the dashed line
indicating the model halves. (c) Cross-sectional interior view of the model
with example sensor positions marked. Position 1 is in a front nostril, and
the other positions are in passageways in the nasal model. The model halves
are joined via a pin and hole mechanism indicated by the arrow.
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encoded by the different sensor environments. The discriminatory
ability of the one sensor as compared to the array was determined
through singular value decomposition (SVD) for feature reduction
followed by classification of analytes based on the shortest
Euclidean distance of each sample to the analyte clusters.

The first question was a simple odor discrimination task to
identify air (control), ethanol, methanol, and propanol. A 100%
correct classification was obtained for both the single anterior sensor
and the five distributed sensors. A much harder task was to identify
five individual rums, ethanol, and air (seven-class problem). Figure
2 shows typical responses from the distributed sensors to ethanol
and rum 1. Using only the position 1 sensor response, we found
that it is not possible to distinguish the two analytes. The responses
from all five distributed sensors, however, revealed differences
between these two analytes, improving their discrimination. On
average, an increase in the rum classification rate of 8( 5% was
obtained when the five-sensor array was used relative to the one
sensor (Table 1). No response curve feature selection was performed
prior to SVD; yet this simplistic method led to improved discrimi-
nation. Weighting particular sensor positions for certain analytes
could potentially further improve discrimination. For example, in
the experiments discussed here, it was found that a sensor in the
third position on average correctly identified rum #5 36% more of
the time than a sensor in the first position (see Supporting
Information). These increases indicate that the change in the sensor
flow environment affects the sensor response pattern, leading to
the enhanced discriminatory ability of the system.

In addition to the rum classification problem, we also looked at
two other odor recognition tasks. Again, sensor position 1 was
compared to the five-sensor array distributed throughout the nasal
cavity. We challenged the system with a five-class problem to
discriminate between air, ethanol, and three perfumes, and an
average increase in the classification rate of 7( 3% was obtained.
A harder five-class problem was discriminating between air, ethanol,
and three brands of unflavored vodka, for which an average increase
of 8 ( 6% was obtained. While the overall classification for each
problem was relatively low, only a single sensor type was employed,

and this lack of sensor diversity led to the low percentages (Table
2). Improvements in the perfume, rum, and vodka problems were
statistically significant at the 99, 95, and 80% confidence levels,
respectively, as determined by the standardt test. Discrimination
between vodkas was the hardest task and therefore had the lowest
confidence. These results explicitly show that a complex flow
environment can provide improved discriminatory power with even
a single sensor type.

The preliminary results of the nasal cavity study show that the
flow environment not only affects sensor response, but also
enhances discrimination by increasing the amount of information
available from the sensor array. Vertebrate systems may enhance
discrimination by weighting particular receptor positions over
others, and it is highly likely that discrimination can be tuned by
weighting particular sensor positions for a given analyte, thereby
further increasing the discriminatory ability of the sensors for some
odor recognition problems. The use of a complex flow environment,
such as a nasal cavity, to provide additional discriminatory
information from sensors is a novel and potentially powerful method
of generating sensor diversity in artificial nose systems. In the
future, this type of nasal cavity system could also be used as a
simple model for studying the role of flow dynamics in vertebrate
olfaction by isolating flow effects from other factors such as the
nasal mucosa and cilia present in biological systems.
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Figure 2. Average response patterns for ethanol (b) and rum #2 (9) at
five sensor positions.

Table 1. Individual Increases in Percent Classification Rates for
Three Odor Discrimination Tasksa

rums perfumes vodkas

experiment 1 14 6.0 14
experiment 2 5.7 10 8.0
experiment 3 8.6 4.0 2.0
experiment 4 13
experiment 5 1.4
average increase in % correct 8( 5 7 ( 3 8 ( 6

a Each experiment had 10 observations of every analyte.

Table 2. Average Percent Correct Classification Rates for Three
Odor Discrimination Tasks

average % correct (one sensor) average % correct (five sensors)

rumsa 46 ( 5 55( 7
perfumesb 56 ( 2 63( 1
vodkasb 56 ( 9 64( 4

a Average of five experiments.b Average of three experiments.
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